首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural prototyping of ceramics by kinetic engineering: applications of spark plasma sintering
Authors:Shen Zhijian  Nygren Mats
Affiliation:Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden. shen@inorg.su.se
Abstract:The significance of kinetics on the development of microstructures in connection with sintering of ceramics is well recognized. In practice, however, it still remains a challenge to prepare designed microstructures via engineering the sintering kinetics because of an insufficient understanding of the different operative mechanisms that are in many cases overlapping. In this article the kinetic issues involved in sintering are described and discussed with respect to their potential for prototyping microstructures that yield desired properties. By exploiting and mastering the differences present in the kinetics of grain sliding, densification, chemical reactions, and grain growth, respectively, we have established processing principles for producing bulk ceramics with microstructures consisting of nano-sized grains, aligned grains, and/or non-equilibrium-phase constitutions, and for achieving radically improved superplasticity in brittle ceramics. Although the studies quoted in this article were mainly carried out by spark plasma sintering, more general implications of them are expected, including efficient particle sliding, deformation-induced dynamic ripening, superplastic deformation-induced dynamic ripening, and non-equilibrium integration.
Keywords:ceramics  nano‐materials  kinetics  microstructure  processing  spark plasma sintering
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号