首页 | 本学科首页   官方微博 | 高级检索  
     

室温固相反应助力制备氮硫共掺杂碳限域的FeCoS2复合物用于高性能钠离子电池负极
引用本文:马文龙,刘桑鑫,周钺,吴平,曹鑫,朱晓舒,魏少华,周益明. 室温固相反应助力制备氮硫共掺杂碳限域的FeCoS2复合物用于高性能钠离子电池负极[J]. 无机化学学报, 2024, 40(1): 145-154
作者姓名:马文龙  刘桑鑫  周钺  吴平  曹鑫  朱晓舒  魏少华  周益明
作者单位:南京师范大学化学与材料科学学院, 江苏省新型动力电池重点实验室, 南京 210023;南京晓庄学院环境科学学院, 南京 211171;南京师范大学分析测试中心, 南京 210023
基金项目:国家自然科学基金(No.22004070,52072181)资助。
摘    要:利用室温固相自组装反应制备Co (Ⅱ)和Fe (Ⅱ)双席夫碱配合物,随后在硫粉存在下中温热处理,使该配合物同时发生热解碳化和固相硫化反应,从而获得N、S共掺杂碳限域的FeCoS2纳米复合物(记为FeCoS2⊂NSC)。通过粉末X射线衍射、透射电镜、X射线光电子能谱和热重分析技术分别对纳米复合物的物相、形貌结构、组分和含量等进行物理表征,并通过循环伏安、恒电流充放电技术测试其电化学储钠性能。研究结果表明,最优化条件下制备的复合物(FeCoS2⊂NSC-7001)中FeCoS2粒子的平均尺寸约为3.4 nm,且被均匀限域在N、S共掺杂的碳基体中;该复合物作为钠离子电池负极时,在0.1 A·g-1的电流密度下经过300次充放电循环,其可逆充电比容量仍高达310.4 mAh·g-1;即使在5 A·g-1的大电流密度下,其充电比容量也高达146.0 mAh·g-1,呈现优异的电化学储钠性能。

关 键 词:钠离子电池  负极材料  FeCoS2纳米晶  N、S共掺杂碳材料  纳米复合物  室温固相反应
收稿时间:2023-10-19
修稿时间:2023-12-20

Room-temperature solid-state reaction-assisted strategy to fabricate nanocomposites of N, S-codoped carbon confined FeCoS2 as high-performance anode materials for sodium-ion batteries
MA Wenlong,LIU Sangxin,ZHOU Yue,WU Ping,CAO Xin,ZHU Xiaoshu,WEI Shaohu,ZHOU Yiming. Room-temperature solid-state reaction-assisted strategy to fabricate nanocomposites of N, S-codoped carbon confined FeCoS2 as high-performance anode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(1): 145-154
Authors:MA Wenlong  LIU Sangxin  ZHOU Yue  WU Ping  CAO Xin  ZHU Xiaoshu  WEI Shaohu  ZHOU Yiming
Affiliation:Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China;Centre for Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
Abstract:In this work, a facile and cost-effective solid-state reaction method for the synthesis of the nanocomposites (denoted as FeCoS2⊂NSC) of N, S-codoped carbon-confined FeCoS2 nanocrystalline was presented. By directly mixing cobalt acetate tetrahydrate, ferrous acetate, o-vanillin and o-phenylenediamine with a molar ratio of 1∶1∶4∶2 at ambient temperature in the presence of sulfur powder, a self-assembly solid state reaction took place to give rise to the complexes of Co(Ⅱ) and Fe(Ⅱ) with a bis-Schiff base, which were evenly distributed in the sulfur powder surroundings. After subsequent annealing at an elevated temperature, simultaneous carbonization and sulfidization occurred, resulting in the in-situ formation of ultrafine FeCoS2 nanoparticles confined in N, S-codoped carbon matrices. The phase, morphology, composition, and content of each component in the nanocomposite were determined by powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The electrochemical sodium storage performance was tested by the cyclic voltammetry and galvanostatic charge-discharge techniques. The results showed that the average size of the FeCoS2 particles in the optimized nanocomposite (FeCoS2 ⊂ NSC-7001) was ca. 3.4 nm, which was uniformly confined in the N, S-codoped carbon matrices. When FeCoS2⊂NSC-7001 was used as an anode material for sodium-ion batteries, it exhibited excellent electrochemical energy storage performance in terms of long-term cycling stability and rate capability. An anode prepared with FeCoS2 ⊂ NSC-7001 nanocomposite exhibited significantly improved sodium-ion storage performance, where a large reversible charging capacity of 310.4 mAh·g-1 was obtained after 300 cycles at a current density of 0.1 A·g-1. Even when such an anode was cycled at a current density of 5 A·g-1, a reversible specific charging capacity of 146.0 mAh·g-1 can still be achieved, showing excellent electrochemical sodium storage performance.
Keywords:sodium-ion batteries  anode materials  FeCoS2 nanocrystalline  N, S-codoped carbon material  nanocomposites  room-temperature solid-state reaction
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号