首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Steady large-scale modulation of a moderately turbulent co-flow jet
Authors:T Cardoso de Souza  BJ Geurts  RJM Bastiaans  LPH De Goey
Institution:1. Combustion Technology, Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlandst.cardoso.de.souza@tue.nl;3. Multiscale Modelling and Simulation, Faculty EEMCS, University of Twente, Enschede, The Netherlands;4. Anisotropic Turbulence, Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands;5. Combustion Technology, Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
Abstract:The effects of a spatial modulation acting at the inflow of a moderately turbulent planar jet surrounded by a faster co-flow are investigated using direct numerical simulation of the Navier–Stokes equations. We adopt a superposition of spatially filtered small-scale random perturbations and a structured large-scale flow modulation. The large-scale modulation is characterised in terms of a Beltrami flow, specified by a wavenumber K. These large-scale modulations are steady and spatially periodic, while the random small-scale perturbations fluctuate in time and in space. The flow configuration studied in this paper is agitated by this combined large- and small-scale agitation at the inflow plane of a rectangular domain of size L × L × 2L in the x-, y- and streamwise z-directions. The inflow perturbation is focused on a strip of size L × D in the x- and y-directions. A parametric variation is carried out considering different choices for the wavenumber of the large-scale modulation. We focus on effects that the inflow modulation has on global characteristics of the flow, e.g. the width of the mixing region formed between the two streams and the dissipation rate, ?. Results show that the width of the mixing region increases faster compared to the case without the large-scale perturbation, when the flow is agitated by structures of size comparable to the integral scales of the flow. For the dissipation rate, results show the presence of a maximum response at a certain wavenumber K in case we apply a large-scale modulation. This maximum is attained at modulation scales that vary locally with respect to the distance from the inflow plane. Close to the inflow, the maximum response occurs at small modulation scales, while further into the domain a maximum response is present at comparably large modulation scales.
Keywords:large-scale modulation  mixing enhancement  co-flow jets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号