首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Imaging and spectroscopy of defects in semiconductors using aberration-corrected STEM
Authors:Klaus van Benthem and Stephen J Pennycook
Institution:(1) Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA;(2) Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA;(3) Present address: Department for Chemical Engineering and Materials Science, University of California at Davis, 1 Shields Ave., Davis, CA 95616, USA
Abstract:The distribution of single dopant or impurity atoms can dramatically alter the properties of semiconductor materials. The sensitivity to detect and localize such single atoms has been greatly improved by the development of aberration correctors for scanning transmission electron microscopes. Today, electron probes with diameters well below 1 Å are available thanks to the improved electron optics. Simultaneous acquisition of image signals and electron energy-loss spectroscopy data provides means of characterization of defect structures in semiconductors with unprecedented detail. In addition to an improvement of the lateral spatial resolution, depth sensitivity is greatly enhanced because of the availability of larger probe forming angles. We report the characterization of an alternate gate dielectric interface structure. Isolated Hf atoms are directly imaged within a SiO2 thin film formed between an HfO2 layer and the silicon substrate. Electron energy-loss spectroscopy shows significant changes of the silicon valence state across the interface structure.
Keywords:PACS" target="_blank">PACS  68  37  Ma  68  37  -d  85  30  De
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号