首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parameters influencing the burning rate of laminar flames propagating into a reacting mixture
Institution:1. Centre for Energy Technology, The University of Adelaide, SA 5005, Australia;2. School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia;3. School of Chemical Engineering, The University of Adelaide, SA 5005, Australia
Abstract:The laminar flame speed is an important property of a reacting mixture and it is used extensively for the characterization of the combustion process in practical devices. However, under engine-relevant conditions, considerable reactivity may be present in the unburned mixture, introducing thus challenges due to couplings of auto-ignition and flame propagation phenomena. In this study, the propagation of transient, one-dimensional laminar flames into a reacting unburned mixture was investigated numerically in order to identify the parameters influencing the flame burning rate in the conduction-reaction controlled regime at constant pressure. It was found that the fuel chemical classification significantly influences the burning rate. More specifically, for hydrogen flames, the “evolution” of the burning rate does not depend on the initial unburned mixture temperature. On the other hand, for n-heptane flames that exhibit low temperature chemistry, the burning rate depends on the instantaneous temperature and composition of the unburned mixture in a coupled way. A new approach was developed allowing for the decoupling the flame chemistry from the ignition dynamics as well as for the decoupling of parameters influencing the burning rate, so that meaningful sensitivity analysis could be performed. It was determined that the burning rate is not directly affected by fuel specific reactions even in the presence of low temperature chemistry whose effect is indirect through the modification of the reactants composition entering the flame. The controlling parameters include but not limited to mixture conductivity, enthalpy, and the species composition evolution in the unburned mixture.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号