首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physics-based plasticity model incorporating microstructure changes for severe plastic deformation
Institution:1. Équipe de mécanique et ingénierie intégrée (M2I), ENSAM, Université Moulay-Ismaïl, Meknès, Morocco;2. Centre de recherche des Écoles de Saint-Cyr Coëtquidan, École militaire de Coëtquidan, 56380 Guer, France;4. SCD Laboratory, Faculty of Sciences, University Abdelmalek-Essaadi, 93030 Tetouan, Morocco;5. Laboratoire d''étude des matériaux avancés et applications (EM2A), Faculté des sciences, Université Moulay-Ismaïl, Meknès, Morocco
Abstract:During machining processes, materials undergo severe deformations that lead to different behavior than in the case of slow deformation. The microstructure changes, as a consequence, affect the materials properties and therefore influence the functionality of the component. Developing material models capable of capturing such changes is therefore critical to better understand the interaction process–materials. In this paper, we introduce a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation Density (DD) models. The modeling and the experimental results of a series of large strain experiments on polycrystalline copper (OFHC) involving sequences of shear deformation and strain rate (varying from quasi-static to dynamic) are very similar to those observed in processes such as machining. The Kocks–Mecking model, using the mechanical threshold stress as an internal state variable, correlates well with experimental results and strain rate jump experiments. This model was compared to the well-known Johnson–Cook model that showed some shortcomings in capturing the stain jump. The results show a high effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical threshold stress dislocation density (MTS–DD), material models were implemented in the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in dislocation density and a reduction in cell size. It could ideally be used in the modeling of machining processes.
Keywords:Plasticity  Strain jump  Dislocation density  Mechanical threshold  Cell size  Machining
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号