首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms
Authors:Gabriel Haeser
Institution:1.Department of Applied Mathematics,University of S?o Paulo,S?o Paulo,Brazil;2.Department of Management Science and Engineering,Stanford University,Stanford,USA
Abstract:We develop a new notion of second-order complementarity with respect to the tangent subspace related to second-order necessary optimality conditions by the introduction of so-called tangent multipliers. We prove that around a local minimizer, a second-order stationarity residual can be driven to zero while controlling the growth of Lagrange multipliers and tangent multipliers, which gives a new second-order optimality condition without constraint qualifications stronger than previous ones associated with global convergence of algorithms. We prove that second-order variants of augmented Lagrangian (under an additional smoothness assumption based on the Lojasiewicz inequality) and interior point methods generate sequences satisfying our optimality condition. We present also a companion minimal constraint qualification, weaker than the ones known for second-order methods, that ensures usual global convergence results to a classical second-order stationary point. Finally, our optimality condition naturally suggests a definition of second-order stationarity suitable for the computation of iteration complexity bounds and for the definition of stopping criteria.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号