首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrochemical quartz crystal microbalance study of azurin adsorption onto an alkanethiol self-assembled monolayer on gold
Authors:Fleming Barry D  Praporski Slavica  Bond Alan M  Martin Lisandra L
Institution:School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Abstract:A quartz crystal microbalance coupled with electrochemistry was used to examine the adsorption of azurin on a gold electrode modified with a self-assembled monolayer of octanethiol. Azurin adsorbed irreversibly to form a densely packed monolayer. The rate of azurin adsorption was related to the bulk concentration of azurin in solution within the concentration range studied. At a high azurin concentration (2.75 muM), adsorption was rapid with a stable adsorption maximum attained in 2-3 min. At a lower azurin solution concentration (0.35 muM), the time to reach a stable adsorption maximum was approximately 30 min. Interestingly, the maximum surface concentration attained for all solution concentrations studied by the QCM method was 25 +/- 1 pmol cm-2, close to that predicted for monolayer coverage. The dissipation was monitored during adsorption, and only small changes were detected, implying a rigid adsorption model, as needed when using the Sauerbrey equation. Cyclic voltammetric data were consistent with a one-electron, surface-confined CuII/CuI azurin process with fast electron-transfer kinetics. The electroactive surface concentration calculated using voltammetry was 7 +/- 1 pmol cm-2. The differences between the QCM and voltammetrically determined surface coverage values reflect, predominantly, the different measurement methods but imply that all surface-confined azurin is not electrochemically active on the time scale of cyclic voltammetry.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号