首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of mordenite composite membranes with seeding
Authors:Xiaohui Su  Gang Li  Ruisen Lin  Eiichi Kikuchi  Masahiko Matsukata
Affiliation:(1) Department of Chemistry, Zhejiang University, Hangzhou, 310027, China;(2) Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
Abstract:Mordenite composite membranes were prepared by means of coating a porous α-alumina support with nanosized mordenite seeds followed by hydrothermal crystallization. A systematic investigation was performed on the influence of several factors such as ageing of the reaction mixture, alkalinity, salt addition and temperature on the formation of a mordenite membrane on the seeded support. The ageing of the reaction mixture reduces the growth rate of mordenite crystal along a-axis and b-axis but hardly influences the growth rate along c-axis. As a result, the boundaries between the surface crystals become a little larger with prolonging the period of ageing time. The growth rate of the mordenite crystal along individual axes increases first and then decreases with increasing concentration of sodium hydroxide. A higher alkalinity is unfavorable for the formation of a continuous mordenite membrane. The addition of salt in the reaction mixture has different effect on the growth rate of the mordenite crystal along each axis. With increasing the amount of salt, there was hardly influence on the growth rate along c-axis, whereas an obvious decline was observed in the growth rate along either a-axis or b-axis, which enlarges the boundaries between the surface crystals. The growth rate of the mordenite crystal increases more along c-axis than that along a-axis or b-axis with increasing temperature for hydrothermal crystallization. The use of a temperature as high as 473 K produces a membrane composed of bar-like crystals with larger boundaries. __________ Translated from Journal of Zhejiang University (Science Edition), 2005, 32(4) (in Chinese)
Keywords:mordenite membrane  seeding  zeolite membrane
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号