首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A direct method for studying particle deposition onto solid surfaces
Authors:Dabroś  T  van de Ven  T G M
Institution:(1) Pulp and Paper Research Institute of Canada, Canada;(2) Present address: Department of Chemistry, McGill University, H3A 2A7 Montreal, Quebec, Canada
Abstract:An experimental technique has been developed to study the deposition of colloidal particles under well controlled hydrodynamic conditions. The deposition process is observed under a microscope and recorded on video tape for further analysis. Fluid flow conditions in the experimental set-up were determined by numerical solution of the Navier-Stokes equations. Mass transfer equations were solved numerically (taking into account hydrodynamic, gravitational, electric double layer, and dispersion forces) for the stagnation point region. Also, some analytical solutions are presented. Deposition has been studied of 0.5mgrm polystyrene latex particles on cover glass slides used as collectors. From an analysis of the shape of the coating density vs. time curves and independently from the distribution of the particles on collector surfaces, it was found that one particle is able to block an area of about 20 to 30 times its geometrical cross-section. The initial flux of particles to the collector for a given salt concentration was found to depend strongly on the method of cleaning the collector surface. In general the flux and the escape of particles to and from the collector surface are sensitive to the interaction energy at small separations. The direct method of observing particle deposition and detachment could lead to important insights into the nature of particle-wall interactions at near contact.On leave from Jagiellonian University, Cracow, Poland.
Keywords:Particle deposition  stagnation point flow collector
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号