首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and tribological performance of self-lubricating diamond/tetrahedral amorphous carbon composite film
Authors:Xinchun ChenZhijian Peng  Xiang YuZhiqiang Fu  Wen YueChengbiao Wang
Affiliation:School of Engineering and Technology, China University of Geosciences, Beijing 100083, PR China
Abstract:In order to smooth the rough surface and further improve the wear-resistance of coarse chemical vapor deposition diamond films, diamond/tetrahedral amorphous carbon composite films were synthesized by a two-step preparation technique including hot-filament chemical vapor deposition for polycrystalline diamond (PCD) and subsequent filtered cathodic vacuum arc growth for tetrahedral amorphous carbon (ta-C). The microstructure and tribological performance of the composite films were investigated by means of various characterization techniques. The results indicated that the composite films consisted of a thick well-grained diamond base layer with a thickness up to 150 μm and a thin covering ta-C layer with a thickness of about 0.3 μm, and sp3-C fraction up to 73.93%. Deposition of a smooth ta-C film on coarse polycrystalline diamond films was proved to be an effective tool to lower the surface roughness of the polycrystalline diamond film. The wear-resistance of the diamond film was also enhanced by the self-lubricating effect of the covering ta-C film due to graphitic phase transformation. Under dry pin-on-disk wear test against Si3N4 ball, the friction coefficients of the composite films were much lower than that of the single PCD film. An extremely low friction coefficient (∼0.05) was achieved for the PCD/ta-C composite film. Moreover, the addition of Ti interlayer between the ta-C and the PCD layers can further reduce the surface roughness of the composite film. The main wear mechanism of the composite films was abrasive wear.
Keywords:81.05.Uw
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号