首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度自适应阶ARMA的混沌序列多步预测
引用本文:余楠,丁国荣,童梦,王文波. 基于多尺度自适应阶ARMA的混沌序列多步预测[J]. 数学的实践与认识, 2021, 0(7): 137-145
作者姓名:余楠  丁国荣  童梦  王文波
作者单位:武汉科技大学理学院
摘    要:混沌时间序列在自然界以及人们的生产生活中很常见,混沌序列看似杂乱无章但相较于纯随机序列其中蕴含着一些非线性的运动特征,提出一种基于多尺度自适应阶ARMA的混沌时间序列多步预测方法.首先利用自适应噪声的完备经验模态分解(CEEMDAN)对原始混沌序列进行分解,获得不同尺度的固有模态分量(IMF)和残余分量.然后采用经粒子...

关 键 词:混沌时间序列预测  CEEMDAN  PSO  ARMA

Multi-step Prediction of Chaotic Time Series Based on Multi-scale Adaptive-order ARMA
YU Nan,DING Guo-rong,TONG Meng,WANG Wen-bo. Multi-step Prediction of Chaotic Time Series Based on Multi-scale Adaptive-order ARMA[J]. Mathematics in Practice and Theory, 2021, 0(7): 137-145
Authors:YU Nan  DING Guo-rong  TONG Meng  WANG Wen-bo
Affiliation:(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
Abstract:Chaotic time series are very common in nature and in people’s production and life.Chaotic sequences seem to be chaotic but contain some nonlinear motion characteristics compared to pure random sequences.Our paper proposes a chaotic time based on multi-scale adaptive ARMA sequence multi-step prediction method.First,the complete empirical mode decomposition(CEEMDAN)of adaptive noise is used to decompose the original chaotic sequence to obtain intrinsic modal components(IMF)and residual components of different scales.Then,the autoregressive moving average model(ARMA),which is optimized by particle swarm optimization(PSO),is used to fit and predict each IMF component.Finally,each component of the prediction is added to obtain the predicted value of the original chaotic sequence.The experimental analysis is based on the Mackay-Glass chaotic sequence and the sunspot number chaotic sequence.The experiment shows that compared with the ARMA,PSO-ARMA and CEEMDAN-ARMA methods,the prediction effect of the method in this paper is better improved,and its average absolute error(MAE),Root Mean Square Error(RMSE)and Mean Absolute Percentage Error(MAPE)are all reduced.
Keywords:Chaotic time series forecasting  CEEMDAN  PSO  ARMA
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号