首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A spontaneous solid-state NO donor to fight antibiotic resistant bacteria
Authors:Giuseppe Pezzotti
Institution:1. Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585 Kyoto, Japan;2. Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan;3. The Center for Advanced Medical Engineering and Informatics, Osaka University, Yamadaoka, Suita, 565-0871 Osaka, Japan;4. Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori 602-0841 Kyoto, Japan
Abstract:This study substantiates the chemical origin of a free-radical-driven antibacterial effect at the surface of biomedical silicon nitride (Si3N4) in comparison with the long-known effect of oxygen reduction by oxidized TiO2 at the surface of biomedical titanium alloys. Similar to the antibacterial effect exerted by reactive oxygen species (ROS; i.e., superoxide anions, hydroxyl radicals, singlet oxygen, and hydrogen peroxide) from TiO2, reactive nitrogen species (RNS), such as nitrous oxide (N2O), nitric oxide (NO), and peroxynitrite (?OONO) in Si3N4, severely affect bacterial metabolism and lead to their lysis. However, in vitro experiment with gram-positive Staphylococcus epidermidis (S. epidermidis, henceforth) revealed that ROS and RNS promoted different mechanisms of lysis. Fluorescence microscopy of NO radicals and in situ time-lapse Raman spectroscopy revealed different metabolic responses of living bacteria in contact with different substrates. After 48 h, the DNA of bacteria showed complete destruction on Si3N4, while carbohydrates of the peptidoglycan membrane induced bacterial degradation on Ti-alloy substrates. Different spectroscopic fingerprints for bacterial lysis documented the distinct effects of RNS and ROS. Spontaneously activated in aqueous environment, the RNS chemistry of Si3N4 proved much more effective in counteracting bacterial proliferation as compared to ROS formed on TiO2, which requires external energy (photocatalytic activation) to enhance effectiveness. Independent of surface topography, the antibacterial effect observed on Si3N4 substrates is due to its unique kinetics ultimately producing NO and represents a new intriguing avenue to fight bacterial resistance to conventional antibiotics.
Keywords:Silicon nitride  Antibacterial behavior  Raman spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号