首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic and mechanistic studies of the I(2)/O(3) photochemistry
Authors:Martín Juan Carlos Gómez  Spietz Peter  Burrows John P
Institution:Institute of Environmental Physics, University of Bremen, P. O. Box 330440, 28334 Bremen, Germany.
Abstract:The atmospherically relevant chemistry generated by photolysis of I2/O3 mixtures has been studied at 298 K in the pressure range from 10 to 400 hPa by using a laboratory flash photolysis setup combining atomic resonance and molecular absorption spectroscopy. The temporal behaviors of I, I(2), IO, and OIO have been retrieved. Conventional kinetic methods and numerical modeling have been applied to investigate the IO self-reaction and the secondary chemistry. A pressure independent value of k(IO + IO) = (7.6 +/- 1.1) x 10(-11) cm(3) molecule-1 s(-1) has been determined. The pressure dependence of the branching ratios for the I + OIO and IOIO product channels in the IO + IO reaction have been determined and have values of 0.45 +/- 0.10 and 0.44 +/- 0.13 at 400 hPa, respectively. The branching ratios for the 2I + O(2) and I(2) + O(2) product channels are pressure independent with values of 0.09 +/- 0.06 and 0.05 +/- 0.03, respectively. The sensitivity analysis indicates that the isomer IOIO is more thermally stable than predicted by theoretical calculations. A reaction scheme comprising OIO polymerization steps has been shown to be consistent with the temporal behaviors recorded in this study. For simplicity, the rate coefficient has been assumed to be the same for each reaction (OIO)(n) + IO --> (OIO)(n+1), n = 1, 2, 3, 4. The lower limit obtained for this rate coefficient is (1.2 +/- 0.3) x 10(-10) cm(3) molecule(-1) s(-1) at 400 hPa. Evidence for the participation of IO in the polymerization mechanism also has been found. The rate coefficient for IO attachment to OIO and to small polymers has been determined to be larger than (5 +/- 2) x 10(-11) cm(3) molecule(-1) s(-1) at 400 hPa. These results provide supporting evidence for atmospheric particle formation induced by polymerization of iodine oxides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号