首页 | 本学科首页   官方微博 | 高级检索  
     


EXTENSION GROWTH AND ANTHOCYANIN RESPONSES OF PHOTOMORPHOGENIC TOMATO MUTANTS TO CHANGES IN THE PHYTOCHROME: PHOTOEQUILIBRIUM DURING THE DAILY PHOTOPERIOD
Authors:L. H. J. Kerckhoffs  R. E. Kendrick    G. C. Whitelam   H. Smith
Affiliation:Department of Plant Physiological Research, Wageningen Agricultural University, General Foulkesweg 72, NL-6703 BW Wageningen, The Netherlands;Department of Botany, University of Leicester, University Road, LE1 7RH Leicester, UK
Abstract:Four genotypes of tomato (Lycopersicon esculentum Mill.) in the genetic background ‘Aha Craig’ were used: an aurea (au) mutant, deficient in the bulk light-labile phytochrome pool; a high pigment (hp) mutant, showing exaggerated phytochrome responses at the time of de-etiolation; the au,hp double mutant and the isogenic wild type (WT). A dramatic increase in plant height resulting from an increase in the length of all internodes for each of the genotypes studied was observed upon reduction of the red light: far-red light photon ratio (R:FR) from 6.90 to 0.13 by addition of FR for the whole photoperiod. A concomitant increase in leaf length was also observed. Since au and au,hp mutants, deficient in the bulk light-labile phytochrome pool, respond to this reduction in the R:FR these data demonstrate that the phytochrome pool that mediates this response is present and fully functional. Anthocyanin was detectable in the comparably developed young growing leaves of the WT and hp mutant under the high R:FR, but not in the au and au,hp mutants, suggesting that the potential for anthocyanin synthesis is correlated with the presence of the bulk light-labile phytochrome pool. The kinetics of anthocyanin decrease in the young growing leaves were investigated in the hp mutant and the results suggest a very rapid cessation of flavonoid biosynthesis upon reduction of the R:FR. The functions of different phytochrome types are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号