首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Mathematical Model with Delays for Schistosomiasis Japonicum Transmission
Authors:Yu YANG and Dongmei XIAO
Institution:1. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240,China
Abstract:A dynamic model of schistosoma japonicum transmission is presented that incorporates effects of the prepatent periods of the different stages of schistosoma into Barbour’s model. The model consists of four delay differential equations. Stability of the disease free equilibrium and the existence of an endemic equilibrium for this model are stated in terms of a key threshold parameter. The study of dynamics for the model shows that the endemic equilibrium is globally stable in an open region if it exists and there is no delays, and for some nonzero delays the endemic equilibrium undergoes Hopf bifurcation and a periodic orbit emerges. Some numerical results are provided to support the theoretic results in this paper. These results suggest that prepatent periods in infection affect the prevalence of schistosomiasis, and it is an effective strategy on schistosomiasis control to lengthen in prepatent period on infected definitive hosts by drug treatment (or lengthen in prepatent period on infected intermediate snails by lower water temperature).
Keywords:A mathematical model  Schistosoma japonicum transmission  Dynamics  Globally stable  Periodic orbits
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《数学年刊B辑(英文版)》浏览原始摘要信息
点击此处可从《数学年刊B辑(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号