首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CO2 in 1-butyl-3-methylimidazolium acetate. 2. NMR investigation of chemical reactions
Authors:Besnard Marcel  Cabaço M Isabel  Vaca Chávez Fabián  Pinaud Noël  Sebastião Pedro J  Coutinho João A P  Mascetti Joëlle  Danten Yann
Institution:GSM Institut des Sciences Moléculaires, CNRS (UMR 5255), Université Bordeaux I, 351, Cours de la Libération, 33405 Talence Cedex, France. m.besnard@ism.u-bordeaux1.fr
Abstract:The solvation of CO(2) in 1-butyl-3-methylimidazolium acetate (Bmim Ac) has been investigated by (1)H, (13)C, and (15)N NMR spectroscopy at low CO(2) molar fraction (mf) (x(CO(2)) ca. 0.27) corresponding to the reactive regime described in part 1 of this study. It is shown that a carboxylation reaction occurs between CO(2) and Bmim Ac, leading to the formation of a non-negligible amount (~16%) of 1-butyl-3-methylimidazolium-2-carboxylate. It is also found that acetic acid molecules are produced during this reaction and tend to form with elapsed time stable cyclic dimers existing in pure acid. A further series of experiments has been dedicated to characterize the influence of water traces on the carboxylation reaction. It is found that water, even at high ratio (0.15 mf), does not hamper the formation of the carboxylate species but lead to the formation of byproduct involving CO(2). The evolution with temperature of the resonance lines associated with the products of the reactions confirms that they have a different origin. The main byproduct has been assigned to bicarbonate. All these results confirm the existence of a reactive regime in the CO(2)-Bmim Ac system but different from that reported in the literature on the formation of a reversible molecular complex possibly accompanied by a minor chemical reaction. Finally, the reactive scheme interpreting the carboxylation reaction and the formation of acetic acid proposed in the literature is discussed. We found that the triggering of the carboxylation reaction is necessarily connected with the introduction of carbon dioxide in the IL. We argue that a more refined scheme is still needed to understand in details the different steps of the chemical reaction in the dense phase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号