首页 | 本学科首页   官方微博 | 高级检索  
     


CsPbBr3–CdS heterostructure: stabilizing perovskite nanocrystals for photocatalysis
Authors:Anthony Kipkorir  Jeffrey DuBose  Junsang Cho  Prashant V. Kamat
Affiliation:Radiation Laboratory, University of Notre Dame, Notre Dame Indiana 46556 USA ; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame Indiana 46556 USA ; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame Indiana 46556 USA,
Abstract:The instability of cesium lead bromide (CsPbBr3) nanocrystals (NCs) in polar solvents has hampered their use in photocatalysis. We have now succeeded in synthesizing CsPbBr3–CdS heterostructures with improved stability and photocatalytic performance. While the CdS deposition provides solvent stability, the parent CsPbBr3 in the heterostructure harvests photons to generate charge carriers. This heterostructure exhibits longer emission lifetime (τave = 47 ns) than pristine CsPbBr3 (τave = 7 ns), indicating passivation of surface defects. We employed ethyl viologen (EV2+) as a probe molecule to elucidate excited state interactions and interfacial electron transfer of CsPbBr3–CdS NCs in toluene/ethanol mixed solvent. The electron transfer rate constant as obtained from transient absorption spectroscopy was 9.5 × 1010 s−1 and the quantum efficiency of ethyl viologen reduction (ΦEV+˙) was found to be 8.4% under visible light excitation. The Fermi level equilibration between CsPbBr3–CdS and EV2+/EV+˙ redox couple has allowed us to estimate the apparent conduction band energy of the heterostructure as −0.365 V vs. NHE. The insights into effective utilization of perovskite nanocrystals built around a quasi-type II heterostructures pave the way towards effective utilization in photocatalytic reduction and oxidation processes.

The insights into effective utilization of perovskite nanocrystals built around a CsPbBr3–CdS heterostructure pave the way towards their utilization in photocatalytic reduction and oxidation processes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号