首页 | 本学科首页   官方微博 | 高级检索  
     

Mo掺杂LiFePO4正极材料的第一性原理研究
引用本文:宋建军,邵光杰,赵健伟,马志鹏,宋微,刘爽,王彩霞. Mo掺杂LiFePO4正极材料的第一性原理研究[J]. 无机化学学报, 2013, 29(18)
作者姓名:宋建军  邵光杰  赵健伟  马志鹏  宋微  刘爽  王彩霞
作者单位:河北省应用化学重点实验室, 燕山大学环境与化学工程学院, 秦皇岛 066004;河北省应用化学重点实验室, 燕山大学环境与化学工程学院, 秦皇岛 066004;亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004;生命分析化学国家重点实验室, 南京大学化学化工学院, 南京 210008;河北省应用化学重点实验室, 燕山大学环境与化学工程学院, 秦皇岛 066004;河北省应用化学重点实验室, 燕山大学环境与化学工程学院, 秦皇岛 066004;河北省应用化学重点实验室, 燕山大学环境与化学工程学院, 秦皇岛 066004;河北省应用化学重点实验室, 燕山大学环境与化学工程学院, 秦皇岛 066004
基金项目:河北省大学自然科学关键研究项目基金(No.ZH2011228)/河北省自然科学基金[No.B201220369]资助项目。
摘    要:基于第一性原理密度泛函理论计算了LiFePO4和LiFe1-xMoxPO4(x=0.005,0.01,0.015,0.02,和0.025)的电子结构和锂离子扩散能垒。结果显示掺杂后的LiFe0.99Mo0.01PO4样品具有最大的(101)晶面间距,由此可知LiFe0.99Mo0.01PO4沿[101]晶向具有最宽的锂离子扩散通道。未掺杂的LiFePO4的锂离子扩散能垒为4.289eV,而掺杂后LiFe0.99Mo0.01PO4降为4.274eV,经过计算得出掺杂样品LiFe0.99Mo0.01PO4的锂离子扩散系数增为未掺杂LiFePO4的1.79倍,表明Mo掺杂有利于改善LiFePO4的锂离子扩散能力。态密度图显示,掺杂Mo后导带底附近的峰强度增强,对LiFePO4电子导电性能的提高是有利的。因此,掺杂Mo有益于提高LiFePO4的锂离子扩散能力和电子导电能力。结合我们的实验结果比较得知,在磷酸铁锂性能的改善上,相比电子导电能力,锂离子扩散能力的提高起到了更重要的作用。

关 键 词:密度泛函理论  电子结构  扩散能垒  掺杂
收稿时间:2013-05-03

First-principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries
SONG Jian-Jun,SHAO Guang-Jie,ZHAO Jian-Wei,MA Zhi-Peng,SONG Wei,LIU Shuang and WANG Cai-Xia. First-principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(18)
Authors:SONG Jian-Jun  SHAO Guang-Jie  ZHAO Jian-Wei  MA Zhi-Peng  SONG Wei  LIU Shuang  WANG Cai-Xia
Affiliation:Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;State key Laboratory of Metastable Materials Science and Technology, Qinhuangdao, Hebei 066004, China;State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China;Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China;Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
Abstract:The electronic structure and diffusion barriers of lithium ions in pure LiFePO4 and doped LiFe1-xMoxPO4(x=0.005, 0.01, 0.015, 0.02, and 0.025) have been calculated based on the first-principle density functional theory (DFT). The calculated results show that the LiFe0.99Mo0.01PO4 has the largest interplanar distance of (101) crystal plane, suggesting the widest Li ion diffusion pathway in [010] direction. Pure LiFePO4 has diffusion energy barrier of 4.289 eV for lithium ions, while the LiFe0.99Mo0.01PO4 has lower diffusion energy barrier of 4.274 eV. The calculated diffusion coefficient of LiFe0.99Mo0.01PO4 is 1.79 times as large as that of pure LiFePO4, indicating that Mo doping is beneficial to lithium ion diffusivity of LiFePO4. The intensity of the partial density of states (PDOS) near the bottom of conduction bands (CBs) becomes stronger after doping with Mo. According to the analysis above, Mo doping is beneficial to improve the electronic conductivity and lithium ion diffusivity of LiFePO4. Lithium ion diffusivity plays more important roles than electronic conductivity on improving the electrochemical performance of LiFePO4 by doping with Mo.
Keywords:density functional theory  electronic structure  diffusion barrier  doping
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号