首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting sequences and structures of MHC-binding peptides: a computational combinatorial approach
Authors:Zen J  Treutlein H R  Rudy G B
Institution:(1) Molecular Modelling Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, P.O. Box 2008, Parkville, VIC, 3050, Australia;(2) Genetics and Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
Abstract:Peptides bound to MHC molecules on the surface of cells convey critical information about the cellular milieu to immune system T cells. Predicting which peptides can bind an MHC molecule, and understanding their modes of binding, are important in order to design better diagnostic and therapeutic agents for infectious and autoimmune diseases. Due to the difficulty of obtaining sufficient experimental binding data for each human MHC molecule, computational modeling of MHC peptide-binding properties is necessary. This paper describes a computational combinatorial design approach to the prediction of peptides that bind an MHC molecule of known X-ray crystallographic or NMR-determined structure. The procedure uses chemical fragments as models for amino acid residues and produces a set of sequences for peptides predicted to bind in the MHC peptide-binding groove. The probabilities for specific amino acids occurring at each position of the peptide are calculated based on these sequences, and these probabilities show a good agreement with amino acid distributions derived from a MHC-binding peptide database. The method also enables prediction of the three-dimensional structure of MHC-peptide complexes. Docking, linking, and optimization procedures were performed with the XPLOR program 1].
Keywords:computational combinatorial chemistry  docking  major histocompatibility complex  MCSS  peptide design
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号