Abstract: | An innovative integrated sensing platform for the detection of various chemical analytes via translating the photonic stop‐band shift of a one‐dimensional photonic crystal (PC) into an electrical current change is proposed. The miniaturized sensing platform features an organic light‐emitting diode (OLED) as a light source and an organic photodetector (OPD) as a light sensor and allows for the detection of ethanol vapor concentrations down to ≈ 10 parts per million (ppm) in nitrogen, which corresponds to a stop‐band shift of ≈ 27 pm. The resolution of the proposed platform exceeds the capabilities of most commercial spectrometers and by far the human eye, while, at the same time, such a sensor is less expensive and less power consuming than a spectrometer. The presented setup is generic and can detect optical changes in the transmission of PCs, which can be induced by both vapor adsorption or by a liquid analyte, as demonstrated with a microfluidic setup. |