首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants
Authors:Kumar Devesh  Sastry G Narahari  de Visser Sam P
Institution:Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India. dkclcre@yahoo.com
Abstract:Cytochromes P450 catalyze a range of different oxygen-transfer processes including aliphatic and aromatic hydroxylation, epoxidation, and sulfoxidation reactions. Herein, we have investigated substrate sulfoxidation mediated by models of P450 enzymes as well as by biomimetic oxidants using density functional-theory methods and we have rationalized the sulfoxidation reaction barriers and rate constants. We carried out two sets of calculations: first, we calculated the sulfoxidation by an iron(IV)-oxo porphyrin cation radical oxidant Fe(IV)=O(Por(+.))SH] that mimics the active site of cytochrome P450 enzymes with a range of different substrates, and second, we studied one substrate (dimethyl sulfide) with a selection of different iron(IV)-oxo porphyrin cation radical oxidants Fe(IV)=O(Por(+.))L] with varying axial ligands L. The study presented herein shows that the barrier height for substrate sulfoxidation correlates linearly with the ionization potential of the substrate, thus reflecting the electron-transfer processes in the rate-determining step of the reaction. Furthermore, the axial ligand of the oxidant influences the pK(a) value of the iron(IV)-oxo group, and, as a consequence, the bond dissociation energy (BDE(OH) value correlates with the barrier height for the reverse sulfoxidation reaction. These studies have generalized substrate-sulfoxidation reactions and have shown how they fundamentally compare with substrate hydroxylation and epoxidation reactions.
Keywords:axial ligands  cytochrome P 450  dioxygen activation  heme proteins  enzyme models
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号