Thermal dependence of electric conductivity in thermoplastic composites |
| |
Authors: | S. A. Sergienko |
| |
Affiliation: | (1) E. O. Paton Welding Institute, Academy of Science of Ukraine, Kiev |
| |
Abstract: | Thermal dependence of the electric conductivity of thermoplastic composites based on both amorphous (hiPS) and crystallized (PP) polymers is investigated in this study. Two types of carbon black fillers with different values of BET surface area were used as charge conductors. Composites based on crystallized polymer matrices indicate the sharp growth of electric resistivity just before the melting range. This maximum is followed by substantial decrease of resistance at T > Tmelt. With the decrease of carbon black concentration both relative growth of resistance at the T Tmelt and further dropping resistance at T > Tmelt increase. Composites filled with particles of higher surface area are characterized by less pronounced matrix influence on thermal dependence of electric conductivity than composites filled with particles of lower surface area; this can be caused by more pronounced matrix/filler interaction in the first case. The range of temperatures at which the resistance increase occurs does not depend on the type of carbon filler and its concentration. Composites with amorphous matrices are characterized by distinct increase of resistance above glass transition. Thermal treatment of the sample significantly affects the initial values and intensity of the temperature dependence of the resistance.To be presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 526–532, July–August, 1995. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|