首页 | 本学科首页   官方微博 | 高级检索  
     


Surface and interface effects on structural transformation of vapor-deposited ethylbenzene films
Authors:Ryutaro Souda
Affiliation:International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Abstract:We have investigated how the structures of vapor-deposited glassy films change with increasing temperature by using time-of-flight secondary ion mass spectrometry and ion scattering spectroscopy. It is found that intermixing of the topmost layer of an ethylbenzene film occur at temperature (~ 80 K) considerably lower than the glass transition temperature (Tg = 118 K) when the film is deposited at 20 K. This phenomenon can be interpreted as the occurrence of a two-dimensional liquid that diffuses into pores of the film, which is evidenced from comparison with surface diffusivity measurements using a porous silicon layer. For nonporous films deposited at higher temperatures, the molecules intermix gradually prior to the abrupt film morphology change at Tg. This phenomenon can be interpreted as decoupling between translational diffusivity and viscosity in the bulk. The film thickness has no significant effects on the evolution of supercooled liquid at Tg except for the monolayer film, whereas crystallization is quenched for the films thinner than 8 monolayers. The roles of the 2D liquid on the surface and an immobilized layer formed at the interface are discussed in finite-size effects on the glass-liquid transition and crystallization.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号