首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of edge chemistry doping on graphene nanoribbon mobility
Authors:Yijian Ouyang  Stefano Sanvito  Jing Guo
Institution:1. Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA;2. Physics Department, Trinity College, Dublin 2, Ireland
Abstract:Doping of semiconductor is necessary for various device applications. Exploiting chemistry at its reactive edges was shown to be an effective way to dope an atomically thin graphene nanoribbon (GNR) for realizing new devices in recent experiments. The carrier mobility limited by edge doping is studied as a function of the GNR width, doping density, and carrier density by using ab initio density functional and parameterized tight binding simulations combined with the non-equilibrium Green's function formalism for quantum transport. The results indicate that for GNRs wider than about 4 nm, the mobility scales approximately linearly with the GNR width, inversely proportional to the edge doping concentration and decreases for an increasing carrier density. For narrower GNRs, dependence of the mobility on the GNR width and carrier density can be qualitatively different.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号