首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion Driven Accelerated Stress Corrosion Cracking in an Acrylic Polymer
Authors:H Neff  CE Precker  HM Laborde  JW Precker  AGS Barreto Neto  AMN Lima
Institution:1. Department of Electrical Engineering, Universidade Federalde Campina Grande (UFCG), 58429-900, Campina Grande, PB, Brazil
2. Department of Physics, UFCG, Campina Grande, Brazil
3. Department of Chemical Engineering, UFCG, Campina Grande, Brazil
Abstract:The dynamic evolution and mechanism of accelerated stress corrosion cracking (aSCC) in anacrylic (PMMA–poly methyl 2-methylpropenoate) polymer sample have been exploited quantitatively, in absence of external mechanical load. Unusually fast propagation of solvent induced cracks in micro-machined sections of the material has been monitored by microscopic video imaging of a test device. Crack emanation from milled micro-channels was precisely triggered by brief surface wetting with acetone solvent. The crack propagation period persists over a time span of approximately 1 min, comprises a final crack length of 0.2–0.3 mm, and an associated crack growth rate that decreases from $2 \times 10^{-5}$ to $10^{-6}$ m/s. The temporal crack evolution scales in accord with 1-dim solvent diffusion along the flaw, super imposed with the residual stress field. Optically recorded birefringence, as well as finite element structure mechanic simulation, identified residual tensile stress in the crack zone as the driving force. The residual stress intensity factor $\Delta K$ was determined to 1–2 MPa  ${\rm m}^{1/2}$ . The aSCC (accelerated stress corrosion cracking) in the material originates from a detrimental combination of residual stress, induced by surface milling; stress induced fast diffusion of the acetone solvent into the material and an associated degradation of structure-mechanic parameters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号