首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Status of turbulence modeling for hypersonic propulsion flowpaths
Authors:Nicholas J Georgiadis  Dennis A Yoder  Manan A Vyas  William A Engblom
Institution:1. NASA Glenn Research Center, Cleveland, OH, 44135, USA
2. Embry Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
Abstract:This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier–Stokes (RANS) methods, but some discussion of newer methods such as large eddy simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath, including laminar-to-turbulent boundary layer transition, shock wave/turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers), and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号