首页 | 本学科首页   官方微博 | 高级检索  
     


Role of nanoparticle surface charge in surface-enhanced Raman scattering
Authors:Alvarez-Puebla Ramón A  Arceo Elena  Goulet Paul J G  Garrido Julián J  Aroca Ricardo F
Affiliation:Materials and Surface Science Group, Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
Abstract:In this work, the role of nanoparticle surface charge in surface-enhanced Raman scattering (SERS) is examined for the common case of measurements made in colloidal solutions of Ag and Au. Average SERS intensities obtained for several analytes (salicylic acid, pyridine, and 2-naphthalenethiol) on Ag and Au colloids are correlated with the pH and zeta potential (zeta) values of the nanoparticle solutions from which they were recorded. The consequence of the electrostatic interaction between the analyte and the metallic nanoparticle is stressed. The zeta potentials of three commonly used colloidal solutions are reported as a function of pH, and a discussion is given on how these influence SERS intensity. Also examined is the importance of nanoparticle aggregation (and colloidal solution collapse) in determining SERS intensities, and how this varies with the pH of the solution. The results show that SERS enhancement is highest at zeta potential values where the colloidal nanoparticle solutions are most stable and where the electrostatic repulsion between the particles and the analyte molecules is minimized. These results suggest some important criteria for consideration in all SERS measurements and also provide important insights into the problem of predicting SERS activities for different molecular systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号