首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of the drag force due to the interstitial gas on granular flows down a chute
Authors:Yonghao Zhang  Jason M. Reese  
Abstract:Fully-developed steady flow of granular material down an inclined chute has been a subject of much research interest, but the effect of the interstitial gas has usually been ignored. In this paper, new expressions for the drag force and energy dissipation caused by the interstitial gas (ignoring the turbulent fluctuations of the gas phase) are derived and used to modify the governing equations derived from the kinetic theory approach for granular–gas mixture flows, where particles are relatively massive so that velocity fluctuations are caused by collisions rather than the gas flow. This new model is applied to fully-developed, steady mixture flows down an inclined chute and the results are compared with other simulations. Our results show that the effect of the interstitial gas plays a significant role in modifying the characteristics of fully developed flow. Although the effect of the interstitial gas is less pronounced for large particles than small ones, the flowfields with large particles are still very different from granular flows which do not incorporate any interactions with the interstitial gas.
Keywords:Granular flow   Kinetic theory   Particles   Chute flow   Drag
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号