Pseudo-poly(amino acid)s: study on construction and characterization of novel chiral and thermally stable nanostructured poly(ester-imide)s containing different trimellitylimido-amino acid-based diacids and pyromellitoyl-tyrosine-based diol |
| |
Authors: | Shadpour Mallakpour Fatemeh Zeraatpisheh |
| |
Affiliation: | (1) Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156–83111, Islamic Republic of Iran;(2) Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156–83111, Islamic Republic of Iran |
| |
Abstract: | A new class of chiral and potentially biodegradable poly(ester-imide)s (PEI)s as pseudo-poly(amino acid)s (PAA)s bearing natural amino acids in the main chain was synthesized. In this investigation, N,N′-(pyromellitoyl)-bis-(L-tyrosine dimethyl ester) as a biodegradable optically active diphenol and synthesized trimellitic anhydride-derived dicarboxylic acids containing different natural amino acids such as S-valine, L-methionine, L-leucine, L-isoleucine, and L-phenylalanine were used for direct polyesterification. With the aim of tosyl chloride/pyridine/N,N′-dimethylformamide system as a condensing agent, the new optically active PEIs were obtained in good yields and moderate inherent viscosity up to 0.42 dL/g. The obtained polymers were characterized with FT-IR, 1H-NMR, X-ray diffraction (XRD), field emission scanning electron microscopy, elemental, and thermogravimetric analysis techniques. These polymers show high solubility in organic solvents, such as N,N′-dimethyl acetamide, N-methyl-2-pyrrolidone, and sulfuric acid at room temperature, and are insoluble in solvents, such as methylene chloride, cyclohexane, and water. Morphology probes showed these pseudo-poly(amino acid)s were noncrystalline and nanostructured polymers. On the basis of thermogravimetric analysis data, such PAAs are thermally stable and can be classified as self-extinguishing polymers. In addition due to the existence of amino acids in the polymer backbones these pseudo-PAAs not only are optically active but also are expected to be biodegradable and therefore could be classified under eco-friendly polymers. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|