首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis of nitrogen-mixed argon plasma characteristicsand injected particle behavior in an ICP torch for ultrafine powdersynthesis
Authors:Joon Hong Park Sang Hee Hong
Affiliation:Dept. of Nucl. Eng., Seoul Nat. Univ.;
Abstract:A numerical model is presented for the analysis of plasma characteristics of an ICP torch and gas mixing effects on the plasma when a nitrogen gas is added into the argon plasma as a carrier or sheath gas at the torch inlet, The fluid equations describing the plasma flow and temperature fields and the diffusions between two different gases are solved along with a magnetic vector potential equation for electromagnetic fields. The trajectory and the temperature change with time for a particle injected into the plasma are also investigated by a plasma-particle interaction model to find out optimum injection conditions for the synthesis of ultrafine nitride ceramic powders, It is found from the calculations that the nitrogen-mixed argon plasma with a nitrogen sheath gas is more favorable than the plasma with a nitrogen carrier gas for the reaction kinetics of nitride synthesis. It is also found that the radial injection through the holes of the tube wall Is preferable to the axial injection at the torch inlet for the complete evaporation of injected particle and the effective chemical reaction of reactant vapor with nitrogen. For the radial injection in an ICP torch of 20 cm in axial length, the optimum injection locations and initial velocities of 50 μm aluminum particles are found for synthesizing aluminum nitride are in the range of 6~12 cm apart from the torch inlet and over 15 m/s, respectively
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号