首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetostrictive composites in the dilute limit
Authors:LP Liu  RD James  PH Leo
Institution:Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
Abstract:We calculate the effective properties of a magnetostrictive composite in the dilute limit. The composite consists of well separated identical ellipsoidal particles of magnetostrictive material, surrounded by an elastic matrix. The free energy of the magnetostrictive particles is computed using the constrained theory of DeSimone and James 2002. A constrained theory of magnetoelasticity with applications to magnetic shape memory materials. J. Mech. Phys. Solids 50, 283-320], where application of an external field causes rearrangement of variants rather than rotation of the magnetization or elastic strain in a variant. The free energy of the composite has an elastic energy term associated with the deformation of the surrounding matrix and demagnetization terms. By using results from the constrained theory and from the Eshelby inclusion problem in linear elasticity, we show that the energy minimization problem for the composite can be cast as a quadratic programming problem. The solution of the quadratic programming problem yields the effective properties of Ni2MnGa and Terfenol-D composite systems. Numerical results show that the average strain of the composite depends strongly on the particle shape, the applied stress, and the elastic modulus of the matrix.
Keywords:Constrained theory  Magnetostrictive composite  Eshelby problem
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号