首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Procedures for construction of anisotropic elastic-plastic property closures for face-centered cubic polycrystals using first-order bounding relations
Authors:Gwénaëlle Proust  Surya R Kalidindi
Institution:a currently at Los Alamos National Laboratory, Los Alamos, NM 87545, USA
b Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
Abstract:Microstructure-sensitive design (MSD) is a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the engineering design enterprise Adams, B.L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S.R., Garmestani, H., 2001. Microstructure-sensitive design of a compliant beam. J. Mech. Phys. Solids 49(8), 1639-1663; Adams, B.L., Lyon, M., Henrie, B., 2004. Microstructures by design: linear problems in elastic-plastic design. Int. J. Plasticity 20(8-9), 1577-1602; Kalidindi, S.R., Houskamp, J.R., Lyons, M., Adams, B.L., 2004. Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int. J. Plasticity 20(8-9), 1561-1575]. MSD employs spectral representations of the local state distribution functions in describing the microstructure quantitatively, and these in turn enable development of invertible linkages between microstructure and effective properties using established homogenization (composite) theories. As a natural extension of the recent publications in MSD, we provide in this paper a detailed account of the methods that can be readily used by mechanical designers to construct first-order elastic-plastic property closures. The main focus in this paper is on the crystallographic texture (also called Orientation Distribution Function or ODF) as the main microstructural parameter controlling the elastic and yield properties of cubic (fcc and bcc) polycrystalline metals. The following specific advances are described in this paper: (i) derivation of rigorous first-order bounds for the off-diagonal terms of the effective elastic stiffness tensor and their incorporation in the MSD framework, (ii) delineation of the union of the property closures corresponding to both the upper and lower bound theories resulting in comprehensive first-order closures, (iii) development of generalized and readily usable expressions for effective anisotropic elastic-plastic properties that could be applied to all cubic polycrystals, and (iv) identification of the locations of readily available or easily processable ODFs (e.g. textures that are produced by rolling, drawing, etc.) on the property closures. It is anticipated that the advances communicated in this paper will make the mathematical framework of MSD highly accessible to the mechanical designers.
Keywords:Polycrystalline materials  Anisotropic materials  Elasticity  Plasticity  Microstructures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号