首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of lattice misorientations on strain heterogeneities in FCC polycrystals
Authors:Ke-Shen Cheong  Esteban P. Busso
Affiliation:a MPT Solutions, Industrial Research Ltd., Lower Hutt, New Zealand
b Department of Mechanical Engineering, Imperial College London, UK
Abstract:It is well documented that the highly heterogeneous deformation behaviour and lattice rotation typically observed within grains in a polycrystal are attributed to microstructural features such as grain structure, topology, size, etc. In this work, the effects of low- and high-angle grain boundaries on the mechanical behaviour of FCC polycrystals are investigated using a micro-mechanical model based on crystal plasticity theory. The constitutive framework relies on dislocation mechanics concepts to describe the plastic deformation behaviour of FCC metallic crystals and is validated by comparing the measured and predicted local and macroscopic deformation behaviour in a thin Al-0.5% Mg polycrystal tensile specimen containing a relatively small number of surface grains. Comparisons at the microscopic (e.g. local slip distribution) and macroscopic (e.g. average stress-strain response) levels elucidate the role of low-angle grain boundaries, which are found to have a profound effect on both the local and average deformation behaviour of FCC polycrystals with a small number of grains. However, this effect diminishes when the number of grains increases and becomes negligible in bulk polycrystals. In light of the widely accepted view that high-angle grain boundaries strongly influence the mechanical behaviour of very fine-grained metals, this work has shown that low-angle grain boundaries can also play an equally important role in the deformation behaviour of polycrystals with a relatively small number of grains.
Keywords:Crystal plasticity   Dislocations   Constitutive behaviour   Polycrystalline material   Finite element
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号