首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of external spin-orbit coupling effects caused by metal-metal cooperativity
Authors:Burress Charlotte N  Bodine Martha I  Elbjeirami Oussama  Reibenspies Joseph H  Omary Mohammad A  Gabbaï François P
Affiliation:Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843-3255, USA.
Abstract:As part of our efforts to discover simple routes to room-temperature phosphors, we have investigated the interaction of bis(pentafluorophenyl)mercury (1) or trimeric perfluoro-o-phenylene mercury (2) with selected arenes (naphthalene, biphenyl, and fluorene). Solution studies indicate that 2, unlike 1, quenches the fluorescence of naphthalene. When compared to 1, the high quenching efficiency of 2 may be correlated to the higher affinity that 2 displays for arenes as well as to more acute external heavy-atom effects caused by the three mercury atoms. In the crystal, the adducts [1.naphthalene], [1.biphenyl], [1.fluorene], and [2.fluorene] form supramolecular binary stacks in which the arene approaches the mercury centers of 1 or 2 to form Hg-C pi-interactions. Analysis of the electrostatic potential surfaces of the individual components supports the involvement of electrostatic interactions. The luminescence spectra of the adducts show complete quenching of the fluorescence and display heavy-atom-induced emission whose energies and vibronic progressions correspond to the phosphorescence of the respective pure arene. The phosphorescence lifetimes are shortened by 3 or 4 orders of magnitude when compared with those of the free arenes. Taken collectively, the structural, photophysical, and computational results herein suggest that the proximity of the three mercury centers serves to enhance the Lewis acidity of 2, which becomes a better acceptor and a more effective heavy-atom effect inducer than 1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号