首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On a relation between the domination number and a strongly connected bidirection of an undirected graph
Authors:Martin Lätsch
Institution:Center for Applied Computer Science Cologne, University of Cologne, Weyertal 80, D-50931 Cologne, Germany
Abstract:As a generalization of directed and undirected graphs, Edmonds and Johnson J. Edmonds, E.L. Johnson, Matching: A well-solved class of linear programs, in: R. Guy, H. Hanani, N. Sauer, J. Schönheim (Eds.), Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 88-92] introduced bidirected graphs. A bidirected graph is a graph each arc of which has either two positive end-vertices (tails), two negative end-vertices (heads), or one positive end-vertex (tail) and one negative end-vertex (head). We extend the notion of directed paths, distance, diameter and strong connectivity from directed to bidirected graphs and characterize those undirected graphs that allow a strongly connected bidirection. Considering the problem of finding the minimum diameter of all strongly connected bidirections of a given undirected graph, we generalize a result of Fomin et al. F.V. Fomin, M. Matamala, E. Prisner, I. Rapaport, Bilateral orientations in graphs: Domination and AT-free classes, in: Proceedings of the Brazilian Symposium on Graphs, Algorithms and Combinatorics, GRACO 2001, in: Electronics Notes in Discrete Mathematics, vol. 7, Elsevier Science Publishers, 2001] about directed graphs and obtain an upper bound for the minimum diameter which depends on the minimum size of a dominating set and the number of bridges in the undirected graph.
Keywords:Bidirected graph  Domination number  Diameter  Strong connectivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号