首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reactions of OH with butene isomers: measurements of the overall rates and a theoretical study
Authors:Vasu Subith S  Huynh Lam K  Davidson David F  Hanson Ronald K  Golden David M
Institution:Mechanical Engineering Department, Stanford University , Stanford, California 94305-3032, USA. subith@gmail.com
Abstract:Reactions of hydroxyl (OH) radicals with 1-butene (k(1)), trans-2-butene (k(2)), and cis-2-butene (k(3)) were studied behind reflected shock waves over the temperature range 880-1341 K and at pressures near 2.2 atm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH(3))(3)-CO-OH, and monitored by narrow-line width ring dye laser absorption of the well-characterized R(1)(5) line of the OH A-X (0, 0) band near 306.7 nm. OH time histories were modeled using a comprehensive C(5) oxidation mechanism, and rate constants for the reaction of OH with butene isomers were extracted by matching modeled and measured OH concentration time histories. We present the first high-temperature measurement of OH + cis-2-butene and extend the temperature range of the only previous high-temperature study for both 1-butene and trans-2-butene. With the potential energy surface calculated using CCSD(T)/6-311++G(d,p)//QCISD/6-31G(d), the rate constants and branching fractions for the H-abstraction channels of the reaction of OH with 1-butene were calculated in the temperature range 300-1500 K. Corrections for variational and tunneling effects as well as hindered-rotation treatments were included. The calculations are in good agreement with current and previous experimental data and with a recent theoretical study.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号