首页 | 本学科首页   官方微博 | 高级检索  
     


Electroweak Nucleon Decays in a Superstrong Magnetic Field
Authors:V. R. Khalilov
Affiliation:(1) Moscow State University, Moscow, Russia
Abstract:We study the influence of a magnetic field on the electroweak processes of nucleon decay in a degenerate ideal gas of neutrons, protons, and electrons situated in an external superstrong constant and homogeneous magnetic field with effects due to the interaction of nucleon anomalous magnetic moments with the magnetic field taken into account. For different values of the chemical potentials of degenerate fermions, we obtain expressions for probabilities of electroweak processes, which are assumed to be responsible for the chemical equilibrium in the central domain of a neutron star with a frozen superstrong magnetic field. We show that the difference between the neutron decay probabilities in the presence of a magnetic field B ≪ 1017 G and without this field is completely determined by changing the phase volume of electron states. We discuss the process of proton decay into a neutron, positron, and neutrino. This process is energetically allowed only when the interaction of nucleon anomalous magnetic moments with a superstrong magnetic field is taken into account. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 145, No. 1, pp. 108–122, October, 2005.
Keywords:strong magnetic field  quantizing energy levels  neutron star  electroweak processes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号