首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy
Authors:Liu Jin  Conboy John C
Institution:Department of Chemistry, University of Utah, 315 South 1400 East RM 2020, Salt Lake City, Utah 84112, USA.
Abstract:In this communication, we demonstrate the first use of sum-frequency generation (SFG) vibrational spectroscopy to measure directly the phase transition temperature (Tm) of a single planar supported lipid bilayer (PSLB). Three saturated phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (DHPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), were studied. Lipid bilayer films were prepared by the the Langmuir-Blodgett method at a surface pressure of 30 nN/m. The symmetric nature of the bilayer was used to determine the Tm of bilayers by measuring the intensity of the symmetric methyl stretch at 2875 cm-1 from the lipid fatty acid chains as a function of temperature. A maximum in the CH3 symmetric stretch transition was observed at the Tm of the lipid film due to the reduction of symmetry in the bilayer. The SFG measured Tm for DPPC, DHPC, and DSPC were 41.0 +/- 0.4, 52.4 +/- 0.7, and 57.9 +/- 0.5 degrees C, respectively. These values correlate well with the literature values of 41.3 +/- 1.8, 49 +/- 3, and 54.5 +/- 1.5 degrees C for DPPC, DHPC, and DSPC, respectively obtained by differential scanning calorimetry (DSC) of lipid vesicles in solution. The high degree of correlation between the SFG spectroscopic measurements and the DSC results suggests the Tm of these lipids is not significantly altered upon immobilization on a surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号