首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mesh shape-quality optimization using the inverse mean-ratio metric
Authors:Todd Munson
Institution:(1) Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
Abstract:Meshes containing elements with bad quality can result in poorly conditioned systems of equations that must be solved when using a discretization method, such as the finite-element method, for solving a partial differential equation. Moreover, such meshes can lead to poor accuracy in the approximate solution computed. In this paper, we present a nonlinear fractional program that relocates the vertex coordinates of a given mesh to optimize the average element shape quality as measured by the inverse mean-ratio metric. To solve the resulting large-scale optimization problems, we apply an efficient implementation of an inexact Newton algorithm that uses the conjugate gradient method with a block Jacobi preconditioner to compute the direction. We show that the block Jacobi preconditioner is positive definite by proving a general theorem concerning the convexity of fractional functions, applying this result to components of the inverse mean-ratio metric, and showing that each block in the preconditioner is invertible. Numerical results obtained with this special-purpose code on several test meshes are presented and used to quantify the impact on solution time and memory requirements of using a modeling language and general-purpose algorithm to solve these problems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号