首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal denaturation of polyalanine peptide in water by molecular dynamics simulations and theoretical prediction of infrared spectra: helix-coil transition kinetics
Authors:Yang Seongeun  Cho Minhaeng
Institution:Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University, Seoul 136-701, Korea.
Abstract:Perspectives in the helix-coil transition kinetics of secondary structures are examined by temperature-jump molecular dynamics (T-jump MD) simulations and theoretically calculated infrared (IR) spectra. Homopolymeric polyalanine, Ac-(A)(21)-NHMe (A21), is unfolded in water by T-jumps from 273 to 300 K approximately 450 K using AMBER ff99 and ff03 force fields. MD simulation results provide in silico evidence that 3(10)-helix and type I beta-turn motifs are highly probable in both ff99 and ff03 results. Temperature-dependent difference IR spectra of A21 do not possess an isosbestic point in both results, and isotope-labeled difference IR spectra in ff03 results predict characteristic profiles observed in experiments. Unfolding rates obtained from simulated time-resoled IR spectra are in good agreement with those estimated by helical contents, but they are still an order of magnitude smaller than experimental values. We demonstrate that the conventional criteria such as single-exponential fit of transient amide I absorbance, sigmoidal fit of temperature-dependent amide I absorbance, and Arrhenius plot of relaxation rates cannot guarantee the validity of assuming a two-state mechanism. We suggest a way of determining T(m) by the temperature dependence of center frequency and full width at half-maximum of amide I band. Overall, both ff99 and ff03 force fields give consistent results in reproducing key aspects concerned experimentally, but are not predominantly satisfactory in quantitative aspects.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号