首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controlled silicon surface functionalization by alkene hydrosilylation
Authors:Langner Alexander  Panarello Anthony  Rivillon Sandrine  Vassylyev Oleksiy  Khinast Johannes G  Chabal Yves J
Institution:Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
Abstract:Immobilization of indene ligands onto two types of hydrogen-terminated surfaces, oxide-free Si H/Si(111)] and oxidized Si H/SiO2/Si], has been investigated by infrared absorption spectroscopy. The activity of a common catalyst (H2PtCl6) is shown to depend critically on the nature of the solvent. For instance, 2-propanol preferentially reacts with the surface, preventing any ligand attachment. Chlorobenzene is more stable, allowing some ligand attachment, but the H2PtCl6 catalyst also fosters silicon oxidation. In contrast, UV irradiation on oxide-free surfaces promotes a cleaner and more efficient reaction, leading to ligand attachment without substrate oxidation. The complete inactivity of H-terminated surfaces with a thin oxide layer H/SiO2/Si] suggests that the UV-induced immobilization is mediated solely by the excitation of electron-hole pairs (excitons) in the substrate and is not the result of direct Si-H bond breaking.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号