首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of drug on the structure and segmental mobility of poly(3-hydroxybutyrate) ultrafine fibers
Authors:S. G. Karpova  A. A. Ol’khov  N. G. Shilkina  A. A. Popov  A. G. Filatova  E. L. Kucherenko  A. L. Iordanskii
Affiliation:1.Emanuel Institute of Biochemical Physics,Russian Academy of Sciences,Moscow,Russia;2.Plekhanov Russian University of Economics,Moscow,Russia;3.Semenov Institute of Chemical Physics,Russian Academy of Sciences,Moscow,Russia
Abstract:Ultrafine fibers of biodegradable natural polyester such as poly(3-hydroxybutyrate) containing dipyridamole at various concentrations as a drug are prepared by the electrospinning method. It is shown by scanning electron microscopy that the absence of dipyridamole or its low concentrations (from 0 to 1%) provide the complex morphology of fibers composed of cylindrical regions 1–3 μm in diameter and thickened spindle-like ones 5–7 μm in average diameter. An increase in the concentration of dipyridamole in fibers leads to disappearance of the latter regions, with the morphology being cylindrical. The features of the crystalline and amorphous structures of poly(3-hydroxybutyrate) and its mixtures with dipyridamole are examined via DSC and EPR probe techniques. It is shown that the addition of dipyridamole to the poly(3- hydroxybutyrate) polymer matrix results in a sharp increase in the crystallinity and a slowdown of the molecular mobility in amorphous regions of ultrafine fibers. The heat treatment (annealing) of fibers leads to a sharp increase in the polymer crystallinity and a reduction of the segmental mobility in intercrystalline regions of the initial poly(3-hydroxybutyrate) fibers and those containing 1% of dipyridamole. All results including the influence of the drug concentration on the shape of fibers and their dynamic characteristics agree well with the thermal and physical parameters and should be used in the design of therapeutic systems for targeted and sustained delivery of bioactive compounds.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号