首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orbital overlap and chemical bonding
Authors:Krapp Andreas  Bickelhaupt F Matthias  Frenking Gernot
Institution:Fachbereich Chemie, Philipps-Universit?t Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
Abstract:The chemical bonds in the diatomic molecules Li(2)-F(2) and Na(2)-Cl(2) at different bond lengths have been analyzed by the energy decomposition analysis (EDA) method using DFT calculations at the BP86/TZ2P level. The interatomic interactions are discussed in terms of quasiclassical electrostatic interactions DeltaE(elstat), Pauli repulsion DeltaE(Pauli) and attractive orbital interactions DeltaE(orb). The energy terms are compared with the orbital overlaps at different interatomic distances. The quasiclassical electrostatic interactions between two electrons occupying 1s, 2s, 2p(sigma), and 2p(pi) orbitals have been calculated and the results are analyzed and discussed. It is shown that the equilibrium distances of the covalent bonds are not determined by the maximum overlap of the sigma valence orbitals, which nearly always has its largest value at clearly shorter distances than the equilibrium bond length. The crucial interaction that prevents shorter bonds is not the loss of attractive interactions, but a sharp increase in the Pauli repulsion between electrons in valence orbitals. The attractive interactions of DeltaE(orb) and the repulsive interactions of DeltaE(Pauli) are both determined by the orbital overlap. The net effect of the two terms depends on the occupation of the valence orbitals, but the onset of attractive orbital interactions occurs at longer distances than Pauli repulsion, because overlap of occupied orbitals with vacant orbitals starts earlier than overlap between occupied orbitals. The contribution of DeltaE(elstat) in most nonpolar covalent bonds is strongly attractive. This comes from the deviation of quasiclassical electron-electron repulsion and nuclear-electron attraction from Coulomb's law for point charges. The actual strength of DeltaE(elstat) depends on the size and shape of the occupied valence orbitals. The attractive electrostatic contributions in the diatomic molecules Li(2)-F(2) come from the s and p(sigma) electrons, while the p(pi) electrons do not compensate for nuclear-nuclear repulsion. It is the interplay of the three terms DeltaE(orb), DeltaE(Pauli), and DeltaE(elstat) that determines the bond energies and equilibrium distances of covalently bonded molecules. Molecules like N(2) and O(2), which are usually considered as covalently bonded, would not be bonded without the quasiclassical attraction DeltaE(elstat).
Keywords:bond energy  bond theory  density functional calculations  energy decomposition analysis  main group elements
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号