Three‐dimensional mesoscopic morphologies and the thermodynamics of structural phase transitions of amphiphilic lipids at air‐water interfaces are studied using self‐consistent field theory. Changing the relative amount of lipids in the system led to a series of 3D morphologic phases with varying average interfacial area per molecule, mimicking a compression of the model membranes. Membranes of both saturated and unsaturated lipids undergo a transition from cylindrical micelle to lamella when the lipid content in the system increases from 2% to about 19–20%. With further increase in the lipid content, saturated lipids first develop non‐uniform quasi‐2D distributions in the lamella and then gradually transform into a hybrid morphology containing quasi‐planar lamellae. In contrast, unsaturated lipids develop reverse‐micellar morphologies.