首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A posteriori estimators for nonlinear elliptic partial differential equations
Institution:Computational Mechanics Group, Department of Mechanical Engineering, UFPE, Recife PE 50740-530, Brazil
Abstract:Many works have reported results concerning the mathematical analysis of the performance of a posteriori error estimators for the approximation error of finite element discrete solutions to linear elliptic partial differential equations. For each estimator there is a set of restrictions defined in such a way that the analysis of its performance is made possible. Usually, the available estimators may be classified into two types, i.e., the implicit estimators (based on the solution of a local problem) and the explicit estimators (based on some suitable norm of the residual in a dual space). Regarding the performance, an estimator is called asymptotically exact if it is a higher-order perturbation of a norm of the exact error. Nowadays, one may say that there is a larger understanding about the behavior of estimators for linear problems than for nonlinear problems. The situation is even worse when the nonlinearities involve the highest derivatives occurring in the PDE being considered (strongly nonlinear PDEs). In this work we establish conditions under which those estimators, originally developed for linear problems, may be used for strongly nonlinear problems, and how that could be done. We also show that, under some suitable hypothesis, the estimators will be asymptotically exact, whenever they are asymptotically exact for linear problems. Those results allow anyone to use the knowledge about estimators developed for linear problems in order to build new reliable and robust estimators for nonlinear problems.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号