首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adenine and RNA in mineral samples. Surface-enhanced Raman spectroscopy (SERS) for picomole detections
Authors:El Amri Chahrazade  Baron Marie-Hélène  Maurel Marie-Christine
Institution:Laboratoire de Biochimie de l'Evolution et Adaptabilité Moléculaire, Institut Jacques Monod, Université Paris-6, tour 43, 2, place Jussieu, 75251 Paris Cedex 05, France.
Abstract:Studies on the interactions of biological macromolecules with mineral surfaces are crucial for the detecting biomarkers. But before this can be done for real samples like rocks or sediments, rational methods based on mineral models plus known amounts of nucleic acids must be developed. The methods must be very sensitive, as the amount of bound macromolecule may be very small. Surface-enhanced Raman spectroscopy (SERS) is perfect for detecting picomolar amounts of nucleic acid materials. In this study, the models used were adenine and GAAA hairpin for nucleic acids materials and a clay (montmorillonite) plus colloidal silver (used for SERS detection) for mineral supports. We have shown that OH(-) anions compete with adenine and the adenyl residues in the GAAA loop for adsorption onto nano-sized silver particles in basic medium. The GAAA adenyl moieties are less well adsorbed onto either clay or silver than is adenine. Also, the transfer of either adenine or the RNA hairpin from the clay to the silver aggregates is pH-dependent. Contact between adenine and the montmorillonite also seems to disperse adenine aggregates. The clay could also increase the flexibility of the RNA hairpin so that it is released from the clay at pH 10, and the affinity of its adenyl moieties for the metallic substrate is enhanced.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号