首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural changes in BK7 glass upon exposure to femtosecond laser pulses
Authors:Douglas J Little  Martin Ams  Simon Gross  Peter Dekker  Christopher T Miese  Alex Fuerbach  Michael J Withford
Abstract:A general picture of refractive index change mechanisms in glass modified by a femtosecond laser has proven elusive. In this paper, Raman microscopy was used in conjunction with refractive near‐field profilometry to analyse the structure of borosilicate glass (Schott BK7) modified by a femtosecond laser and determine the mechanism of the observed refractive index change. For a pulse repetition rate of 1 kHz, it was determined that the refractive index change was due to an elevated population of non‐bridging oxygen atoms, resulting in more ionic bonds forming within the glass network and increasing the molar refractivity of the glass. For a pulse repetition rate of 5.1 MHz, the dominant mechanism of refractive index change was densification and rarefaction of the glass network. Different refractive index change mechanisms were attributed to different thermal conditions imparted to the glass under different pulse repetition rates. Implications for device fabrication are also discussed. These findings constitute an important step toward a complete overview of femtosecond‐laser‐induced refractive index change in glass. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:femtosecond laser  waveguide  Raman microscopy  borosilicate glass  cumulative heating
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号