首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Full field analysis of an anti-plane interface crack subjected to dynamic body forces
Institution:1. Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea;2. Department of Electronics Engineering, Catholic University of Daegu, Hayang, Kyeongbuk 712-702, Republic of Korea
Abstract:In this study, the transient full field response of an interface crack between two different media subjected to dynamic body force at one material is investigated. For time t < 0, the bimaterial medium is stress free and at rest. At t = 0, a concentrated anti-plane dynamic point loading is applied at the medium as shown in Fig. 1. The total wave field is due to the effect of this point loading and the scattering of the incident waves by the interface crack. An alternative methodology that is different from the conventional superposition method is used to construct the reflected, refracted and diffracted wave fields. A useful fundamental solution is proposed in this study and the full field solution is determined by superposition of the fundamental solution in the Laplace transform domain. The proposed fundamental problem is the problem of applying an exponentially distributed traction (in the Laplace transform domain) on the interfacial crack faces. The Cagniard–de Hoop method of Laplace inversion is used to obtain the transient solution in time domain. Exact transient closed form solutions for stresses and stress intensity factors are obtained. Numerical results for the time history of stresses and stress intensity factors during the transient process are discussed in detail.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号