首页 | 本学科首页   官方微博 | 高级检索  
     检索      

具有吸附-分解NOx功能的多酸催化新体系研究
引用本文:宋淑美,马涛,姚远,王睿,赵海霞.具有吸附-分解NOx功能的多酸催化新体系研究[J].燃料化学学报,2009,37(1):87-92.
作者姓名:宋淑美  马涛  姚远  王睿  赵海霞
作者单位:School of Environmental Science &,Engineering, Shandong University, Jinan 250100, China
基金项目:国家自然科学基金,教育部新世纪优秀人才支持计划,山东省优秀中青年科学家科研奖励基金 
摘    要:采用乙醚萃取法、浸渍法制备了具有吸附-分解NOx功能的多酸催化新体系,并对其进行了IR、XRD、TEM表征,在固定床催化反应器中考察了体系对NOx的吸附与分解性能。结果表明,钨系杂多酸优于钼系,H3PMo12-xWxO40(x=1、3、6、12)随着取代钼的钨原子数目增多,对NOx的吸附能力增强;二氧化钛、碳纳米管均为磷钨酸(HPW)的优良载体,后者对体系有明显的增效作用;TiO2经500℃煅烧后,以磷钨酸水溶液为浸渍剂,HPW负载量为20%时,制得的HPW/TiO2体系的脱硝性能最佳,对NOx的吸附率可达62.8%;混酸(VHNO3∶ VH2SO4=1∶3)能在碳纳米管上引入含氧基团使其在水中的分散性能增强,以水为浸渍溶剂、混酸改性后的碳纳米管为载体制得的HPW/CNT催化体系优于乙醇为浸渍溶剂制备的该催化体系,当HPW负载量为70%时,前者对NOx的吸附率可达73.5%。通过GC-MS检测确认了吸附质催化分解为N2的有效性。

关 键 词:氮氧化物  杂多酸  吸附  分解  
收稿时间:2008-04-11
修稿时间:2008-07-29

New catalyst systems of heteropoly compounds as functional material for the adsorption-decomposition of NO_x
SONG Shu-mei,MA Tao,YAO Yuan,WANG Rui,ZHAO Hai-xia.New catalyst systems of heteropoly compounds as functional material for the adsorption-decomposition of NO_x[J].Journal of Fuel Chemistry and Technology,2009,37(1):87-92.
Authors:SONG Shu-mei  MA Tao  YAO Yuan  WANG Rui  ZHAO Hai-xia
Institution:School of Environmental Science & Engineering;Shandong University;Jinan 250100;China
Abstract:Several catalysts of heteropoly compounds (HPCs) with the performance of NOx adsorption-decomposition were prepared by means of ethanol-extraction and impregnation. The catalysts were characterized by IR, XRD and TEM and evaluated in a fixed bed reactor. The results showed that tungsten containing HPCs were superior to molybdenum containing HPCs for NOx adsorption; with the increase of the number of molybdenum atoms substituted by tungsten in H3PMo12-xWxO40(x=1、3、6、12), its NOx adsorption efficiency increased. Titania and carbon nanotube (CNT) were good supports for H3PW12O40(HPW); CNT performed better than titania on the adsorption of NOx. When TiO2 was calcinated at 500℃ and the HPW loading was 20%, the NOx adsorption efficiency of HPW/TiO2 reached 62.8%. Mixed HNO3/H2SO4 with a volume ratio of 1∶ 3 could produce functional groups such as COO- and C-O on the surface of CNT, which could enhance the dispersion of CNT in the aqueous solution. HPW/CNT catalyst prepared with HNO3/H2SO4 modified CNT as support and using water as impregnation solvent was superior to that using ethanol as impregnation solvent; with the HPW loading of 70%, the adsorption efficiency of NOx by HPW/CNT reached 73.5%. The process effectiveness for NOx decomposition into N2 was confirmed by GC-MS analysis.
Keywords:nitric oxides  heteropoly compound  adsorption  decomposition  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《燃料化学学报》浏览原始摘要信息
点击此处可从《燃料化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号